Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.903
Filtrar
1.
Cell Rep ; 42(3): 112194, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857184

RESUMO

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Assuntos
Sistema Nervoso Entérico , Gânglios , Multiômica , Neurogênese , Neuroglia , Análise de Célula Única , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurogênese/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , RNA/análise , RNA/genética , Gânglios/citologia , Masculino , Feminino , Animais , Camundongos , Sistema Nervoso Entérico/citologia , Análise da Expressão Gênica de Célula Única , Técnicas de Cultura de Células , Intestino Delgado/citologia , Desmame
2.
Eur J Histochem ; 65(s1)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34346664

RESUMO

The neuroglia of the central and peripheral nervous systems undergo numerous changes during normal aging. Astrocytes become hypertrophic and accumulate intermediate filaments. Oligodendrocytes and Schwann cells undergo alterations that are often accompanied by degenerative changes to the myelin sheath. In microglia, proliferation in response to injury, motility of cell processes, ability to migrate to sites of neural injury, and phagocytic and autophagic capabilities are reduced. In sensory ganglia, the number and extent of gaps between perineuronal satellite cells - that leave the surfaces of sensory ganglion neurons directly exposed to basal lamina- increase significantly. The molecular profiles of neuroglia also change in old age, which, in view of the interactions between neurons and neuroglia, have negative consequences for important physiological processes in the nervous system. Since neuroglia actively participate in numerous nervous system processes, it is likely that not only neurons but also neuroglia will prove to be useful targets for interventions to prevent, reverse or slow the behavioral changes and cognitive decline that often accompany senescence.


Assuntos
Envelhecimento , Astrócitos/citologia , Gânglios/citologia , Neuroglia/citologia , Células de Schwann/citologia , Células Receptoras Sensoriais/citologia , Animais
3.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33637558

RESUMO

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.


Assuntos
Gânglios/embriologia , Gânglios/transplante , Interneurônios/transplante , Eminência Mediana/embriologia , Eminência Mediana/transplante , Transplante Heterólogo/métodos , Animais , Feminino , Gânglios/citologia , Masculino , Eminência Mediana/citologia , Ratos , Ratos Sprague-Dawley , Suínos , Técnicas de Cultura de Tecidos/métodos
4.
Sci Rep ; 11(1): 1101, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441707

RESUMO

Genetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.


Assuntos
Organoides/citologia , Retina/citologia , Células Ganglionares da Retina/citologia , Diferenciação Celular , Linhagem Celular , Gânglios/citologia , Humanos , Células Fotorreceptoras/citologia
5.
Eur J Pharmacol ; 886: 173536, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896550

RESUMO

The cardiac plexus, which contains parasympathetic ganglia, plays an important role in regulating cardiac function. Histamine is known to excite intracardiac ganglion neurons, but the underlying mechanism is obscure. In the present study, therefore, the effect of histamine on rat intracardiac ganglion neurons was investigated using perforated patch-clamp recordings. Histamine depolarized acutely isolated neurons with a half-maximal effective concentration of 4.5 µM. This depolarization was markedly inhibited by the H1 receptor antagonist triprolidine and mimicked by the H1 receptor agonist 2-pyridylethylamine, thus implicating histamine H1 receptors. Consistently, reverse transcription-PCR (RT-PCR) and Western blot analyses confirmed H1 receptor expression in the intracardiac ganglia. Under voltage-clamp conditions, histamine evoked an inward current that was potentiated by extracellular Ca2+ removal and attenuated by extracellular Na+ replacement with N-methyl-D-glucamine. This implicated the involvement of non-selective cation channels, which given the link between H1 receptors and Gq/11-protein-phospholipase C signalling, were suspected to be transient receptor potential canonical (TRPC) channels. This was confirmed by the marked inhibition of the inward current through the pharmacological disruption of either Gq/11 signalling or intracellular Ca2+ release and by the application of the TRPC blockers Pyr3, Gd3+ and ML204. Consistently, RT-PCR analysis revealed the expression of several TRPC subtypes in the intracardiac ganglia. Whilst histamine was also separately found to inhibit the M-current, the histamine-induced depolarization was only significantly inhibited by the TRPC blockers Gd3+ and ML204, and not by the M-current blocker XE991. These results suggest that TRPC channels serve as the predominant mediator of neuronal excitation by histamine.


Assuntos
Gânglios/citologia , Gânglios/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/inervação , Histamina/farmacologia , Canais Iônicos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Cátion TRPC/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Meglumina/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Wistar , Triprolidina/farmacologia , Fosfolipases Tipo C/efeitos dos fármacos
6.
Tissue Cell ; 64: 101344, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32473709

RESUMO

The jugular ganglion (JG) contains sensory neurons of the vagus nerve which innervate somatic and visceral structures in cranial and cervical regions. In this study, the number of sensory neurons in the human JG was investigated. And, the morphology of sensory neurons in the human JG and nodose ganglion (NG) was compared. The estimated number of JG neurons was 2721.8-9301.1 (average number of sensory neurons ±â€¯S.D. = 7975.1 ±â€¯3312.8). There was no significant difference in sizes of the neuronal cell body and nucleus within the JG (cell body, 1128.8 ±â€¯99.7 µâ€¯m2; nucleus, 127.7 ±â€¯20.8 µâ€¯m2) and NG (cell body, 963.8 ±â€¯225.7 µâ€¯m2; nucleus, 123.2 ±â€¯32.3 µâ€¯m2). These findings indicate that most of sensory neurons show the similar morphology in the JG and NG. Our immunohistochemical method also demonstrated the distribution of ion channels, neurotransmitter agents and calcium-binding proteins in the human JG. Numerous JG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1 (TRPV1, mean ±â€¯SD = 19.9 ±â€¯11.5 %) and calcitonin gene-related peptide (CGRP, 28.4 ±â€¯6.7 %). A moderate number of JG neurons contained TRPV2 (12.0 ±â€¯4.7 %), substance P (SP, 15.7 ±â€¯6.9 %) and secreted protein, acidic and rich in cysteine-like 1 (SPARCL1, 14.6 ±â€¯7.4 %). A few JG neurons had vesicular glutamate transporter 2 (VGLUT2, 5.6 ±â€¯2.9 %) and parvalbumin (PV, 2.3 ±â€¯1.4 %). SP- and TRPV2-containing JG neurons had mainly small and medium-sized cell bodies, respectively. TRPV1- and VGLUT2- containing JG neurons were small to medium-sized. CGRP- and SPARCL1-containing JG neurons were of various cell body sizes. Sensory neurons in the human JG were mostly free of vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY). In the external auditory canal skin, subepithelial nerve fibers contained TRPV1, TRPV2, SP, CGRP and VGLUT2. Perivascular nerve fibers also had TRPV1, TRPV2, SP, CGRP, VIP, NPY and TH. However, PV- and SPARCL1-containing nerve endings could not be seen in the external auditory canal. It is likely that sensory neurons in the human JG can transduce nociceptive and mechanoreceptive information from the external auditory canal. Theses neurons may be also associated with neurogenic inflammation in the external auditory canal and ear-cough reflex through the vagus nerve.


Assuntos
Gânglios , Neuropeptídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Idoso , Autopsia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meato Acústico Externo/citologia , Meato Acústico Externo/metabolismo , Feminino , Gânglios/citologia , Gânglios/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Substância P/metabolismo , Nervo Vago/citologia , Nervo Vago/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
7.
Development ; 147(7)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32122989

RESUMO

The Gsx2 homeodomain transcription factor promotes neural progenitor identity in the lateral ganglionic eminence (LGE), despite upregulating the neurogenic factor Ascl1. How this balance in maturation is maintained is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in subapical progenitors that have unique transcriptional signatures in LGE ventricular zone (VZ) cells. Moreover, whereas Ascl1 misexpression promotes neurogenesis in dorsal telencephalic progenitors, the co-expression of Gsx2 with Ascl1 inhibits neurogenesis. Using luciferase assays, we found that Gsx2 reduces the ability of Ascl1 to activate gene expression in a dose-dependent and DNA binding-independent manner. Furthermore, Gsx2 physically interacts with the basic helix-loop-helix (bHLH) domain of Ascl1, and DNA-binding assays demonstrated that this interaction interferes with the ability of Ascl1 to bind DNA. Finally, we modified a proximity ligation assay for tissue sections and found that Ascl1-Gsx2 interactions are enriched within LGE VZ progenitors, whereas Ascl1-Tcf3 (E-protein) interactions predominate in the subventricular zone. Thus, Gsx2 contributes to the balance between progenitor maintenance and neurogenesis by physically interacting with Ascl1, interfering with its DNA binding and limiting neurogenesis within LGE progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/embriologia , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/metabolismo , Proliferação de Células/genética , Células Cultivadas , Drosophila , Embrião de Mamíferos , Feminino , Gânglios/citologia , Gânglios/embriologia , Proteínas de Homeodomínio/genética , Homeostase/genética , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica , Telencéfalo/citologia , Telencéfalo/embriologia
8.
Parasitol Res ; 119(1): 317-319, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782012

RESUMO

Muscle cells of a digenean fish blood fluke, Aporocotyle simplex, aggregate along the periphery of the cerebral ganglia. Solitary myocytons and sarcoplasmic processes with muscle fibres give rise to long, narrow lamellate projections, which are visible along the periphery and within ganglia. These ultrastructural observations suggest a switching of glial functions to muscle cells and represent additional evidence of the phylogenetic lability of glial cells in bilaterians.


Assuntos
Células Musculares/classificação , Neuroglia/classificação , Schistosomatidae/citologia , Animais , Doenças dos Peixes/parasitologia , Gânglios/citologia , Células Musculares/citologia , Células Musculares/ultraestrutura , Neuroglia/citologia , Neuroglia/ultraestrutura , Schistosomatidae/anatomia & histologia , Schistosomatidae/ultraestrutura , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
9.
Artigo em Inglês | MEDLINE | ID: mdl-31838572

RESUMO

The butterfly Papilio xuthus has acute tetrachromatic color vision. Its eyes are furnished with eight spectral classes of photoreceptors, situated in three types of ommatidia, randomly distributed in the retinal mosaic. Here, we investigated early chromatic information processing by recording spectral, angular, and polarization sensitivities of photoreceptors and lamina monopolar cells (LMCs). We identified three spectral classes of LMCs whose spectral sensitivities corresponded to weighted linear sums of the spectral sensitivities of the photoreceptors present in the three ommatidial types. In ~ 25% of the photoreceptor axons, the spectral sensitivities differed from those recorded at the photoreceptor cell bodies. These axons showed spectral opponency, most likely mediated by chloride ion currents through histaminergic interphotoreceptor synapses. The opponency was most prominent in the processes of the long visual fibers in the medulla. We recalculated the wavelength discrimination function using the noise-limited opponency model to reflect the new spectral sensitivity data and found that it matched well with the behaviorally determined function. Our results reveal opponency at the first stage of Papilio's visual system, indicating that spectral information is preprocessed with signals from photoreceptors within each ommatidium in the lamina, before being conveyed downstream by the long visual fibers and the LMCs.


Assuntos
Borboletas/fisiologia , Canais de Cloreto/metabolismo , Percepção de Cores , Visão de Cores , Gânglios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Borboletas/citologia , Borboletas/metabolismo , Cloretos/metabolismo , Potenciais Evocados Visuais , Feminino , Gânglios/citologia , Gânglios/metabolismo , Histamina/metabolismo , Ativação do Canal Iônico/genética , Masculino , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses/fisiologia , Vias Visuais/fisiologia
10.
Proc Natl Acad Sci U S A ; 116(45): 22833-22843, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636217

RESUMO

Birdsong, like human speech, consists of a sequence of temporally precise movements acquired through vocal learning. The learning of such sequential vocalizations depends on the neural function of the motor cortex and basal ganglia. However, it is unknown how the connections between cortical and basal ganglia components contribute to vocal motor skill learning, as mammalian motor cortices serve multiple types of motor action and most experimentally tractable animals do not exhibit vocal learning. Here, we leveraged the zebra finch, a songbird, as an animal model to explore the function of the connectivity between cortex-like (HVC) and basal ganglia (area X), connected by HVC(X) projection neurons with temporally precise firing during singing. By specifically ablating HVC(X) neurons, juvenile zebra finches failed to copy tutored syllable acoustics and developed temporally unstable songs with less sequence consistency. In contrast, HVC(X)-ablated adults did not alter their learned song structure, but generated acoustic fluctuations and responded to auditory feedback disruption by the introduction of song deterioration, as did normal adults. These results indicate that the corticobasal ganglia input is important for learning the acoustic and temporal aspects of song structure, but not for generating vocal fluctuations that contribute to the maintenance of an already learned vocal pattern.


Assuntos
Comunicação Animal , Córtex Cerebral/fisiologia , Gânglios/fisiologia , Aprendizagem , Neurônios/fisiologia , Aves Canoras/fisiologia , Animais , Córtex Cerebral/citologia , Gânglios/citologia
11.
Pol J Vet Sci ; 22(2): 427-430, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31269360

RESUMO

Combined retrograde tracing and double-labelling immunofluorescence were used to investigate the distribution and chemical coding of neurons in aorticoerenal (ARG) and testicular (TG) ganglia supplying the urinary bladder apex (UBA) in the juvenile male pig (n=4, 12 kg. body weight). Retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of the bladder apex under pentobarbital anesthesia. After three weeks all the pigs were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde. TG and ARG were collected and processed for double-labelling immunofluorescence. The presence of tyrosine hydroxylase (TH) or dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), nitric oxide synthase (NOS) and vesicular acetylcholine transporter (VAChT) were investigated. The cryostat sections were examined with a Zeiss LSM 710 confocal microscope equipped with adequate filter blocks. The TG and ARG were found to contain many FB-positive neurons projecting to the UBA (UBA-PN). The UBA-PN were distributed in both TG and ARG. The majority were found in the left ganglia, mostly in TG. Immunohistochemistry disclosed that the vast majority of UBA-PN were noradrenergic (TH- and/or DBH-positive). Many noradrenergic neurons also contained immunoreactivity to NPY, SOM or GAL. Most of the UBA-PN were supplied with varicose VAChT-, or NOS- IR (immunoreactive) nerve fibres. This study has revealed a relatively large population of differently coded ARG and TG neurons projecting to the porcine urinary bladder. As judged from their neurochemical organization these nerve cells constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.


Assuntos
Aorta/inervação , Gânglios/citologia , Rim/inervação , Suínos , Testículo/inervação , Bexiga Urinária/inervação , Animais , Gânglios/fisiologia , Masculino
12.
Anat Rec (Hoboken) ; 302(12): 2233-2244, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31241243

RESUMO

Although pulmonary ganglia were considered to be an analogue of the myenteric ganglia of intestines in embryos, there seemed to be no morphological evaluation in the later stage of development. We conducted immunostainings of intrapulmonary nerves using 17 human fetuses at 14-18 and 28-34 weeks. The ganglion cells were small (15-20 µm in diameter) in the earlier group, but they increased in size (20-30 µm) in the late group. One ganglion, containing 5-30 cell bodies, was usually located "outside" of the bronchial smooth muscle or cartilage. In addition, a few ganglion was found beneath the mucosa of the trachea and principal bronchi. The highest density of ganglia (5-15 ganglia per section with 50 µm interval) was found at the origin of the subsegmental bronchi, but ganglia were absent along more peripheral bronchi those are responsible for contraction and obstruction of the airway. Therefore, in topographical relation between smooth muscle and nerve, intrapulmonary intrinsic neurons were different from intestinal myenteric neurons. Consequently, a previous hypothesis of "embryonic intramuscular bronchial ganglia" seemed not to be based on observations of the peripheral bronchus but on the central bronchus than the sub-subsegmental level. An extrinsic migration and redistribution of ganglia might occur at midterm to provide the final location outside of airway smooth muscles. Finally, no ganglion cell bodies were positive either for neuronal nitric oxide synthase or tyrosine hydroxylase. Instead of the classical entity of autonomic nerves, nonadrenergic noncholinergic (NANC) innervation might be dominant even in fetuses. Anat Rec, 302:2233-2244, 2019. © 2019 American Association for Anatomy.


Assuntos
Brônquios/citologia , Feto/citologia , Gânglios/citologia , Intestinos/citologia , Músculo Liso/citologia , Neurônios/citologia , Brônquios/metabolismo , Feto/metabolismo , Gânglios/metabolismo , Humanos , Músculo Liso/metabolismo , Neurônios/metabolismo
13.
Sci Rep ; 9(1): 5435, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931998

RESUMO

In the hippocampal CA1, caudal ganglionic eminence (CGE)-derived interneurons are recruited by activation of glutamatergic synapses comprising GluA2-containing calcium-impermeable AMPARs and exert inhibitory regulation of the local microcircuit. However, the role played by AMPARs in maturation of the developing circuit is unknown. We demonstrate that elimination of the GluA2 subunit (GluA2 KO) of AMPARs in CGE-derived interneurons, reduces spontaneous EPSC frequency coupled to a reduction in dendritic glutamatergic synapse density. Removal of GluA1&2&3 subunits (GluA1-3 KO) in CGE-derived interneurons, almost completely eliminated sEPSCs without further reducing synapse density, but increased dendritic branching. Moreover, in GluA1-3 KOs, the number of interneurons invading the hippocampus increased in the early postnatal period but converged with WT numbers later due to increased apoptosis. However, the CCK-containing subgroup increased in number, whereas the VIP-containing subgroup decreased. Both feedforward and feedback inhibitory input onto pyramidal neurons was decreased in GluA1-3 KO. These combined anatomical, synaptic and circuit alterations, were accompanied with a wide range of behavioural abnormalities in GluA1-3 KO mice compared to GluA2 KO and WT. Thus, AMPAR subunits differentially contribute to numerous aspects of the development and maturation of CGE-derived interneurons and hippocampal circuitry that are essential for normal behaviour.


Assuntos
Neurônios GABAérgicos/citologia , Gânglios/citologia , Hipocampo/citologia , Interneurônios/citologia , Receptores de AMPA/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Gânglios/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Interneurônios/metabolismo , Camundongos , Sinapses/metabolismo , Sinapses/fisiologia
14.
Methods Mol Biol ; 1952: 117-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825171

RESUMO

The cellular components of the enteric nervous system (ENS), namely enteric neurons and glia, display plasticity and respond to environmental cues deriving from growth factors, extracellular matrix (ECM) molecules, and cell-surface molecules, both in physiological and pathological conditions. ECM, in particular, provides an important framework for the enteric microenvironment and influences the homeostasis of myenteric neuronal circuitries. Isolation of pure myenteric plexus preparations from adult tissue permits to investigate changes in the ENS involving specific ECM, such as hyaluronan. This approach is based upon the possibility to isolate myenteric ganglia from the intestinal wall of either adult animals or humans, after microdissection and subsequent enzymatic digestion of the tissue. Enteric ganglia are free of connective tissue, extracellular collagen, and blood vessels, and thus treatment of intact intestinal segments with highly purified collagenases permits ganglia isolation from the surrounding smooth muscle cells. In this chapter, we describe methods for visualizing HA in isolated primary cultures of adult rat small intestine myenteric ganglia.


Assuntos
Imunofluorescência/métodos , Gânglios/química , Ácido Hialurônico/análise , Intestino Delgado/inervação , Microscopia Confocal/métodos , Plexo Mientérico/química , Animais , Células Cultivadas , Gânglios/citologia , Gânglios/ultraestrutura , Plexo Mientérico/citologia , Plexo Mientérico/ultraestrutura , Ratos , Técnicas de Cultura de Tecidos/métodos
15.
Anal Cell Pathol (Amst) ; 2019: 3085181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082967

RESUMO

Chronic inflammation induced by Helicobacter pylori (H. pylori) infection plays a major role in development of gastric cancer. However, recent findings suggested that progression of inflammation and neoplastic transformation in H. pylori infection are more complex than previously believed and could involve different factors that modulate gastric microenvironment and influence host-pathogen interaction. Among these factors, gastric myenteric plexus and its potential adaptive changes in H. pylori infection received little attention. This study is aimed at identifying the impact of H. pylori-associated gastritis on number and morphology of nerve cells in the stomach. The distribution of density, inflammation, and programmed cell death in neurons was immunohistochemically assessed in full-thickness archival tissue samples obtained from 40 patients with H. pylori infection who underwent surgery for gastric cancer and were compared with findings on samples collected from 40 age- and sex-matched subjects without bacteria. Overall, significant differences were noted between H. pylori-positive and H. pylori-negative patients. The analysis of tissue specimens obtained from those with infection revealed higher density and larger surface of the myenteric nervous plexus, as well as a significant increase in the number of gastric neuronal cell bodies and glial cells compared to controls. A predominant CD3-immunoreactive T cell infiltrate confined to the myenteric plexus was observed in infected subjects. The presence of mature B lymphocytes, plasma cells, and eosinophils was also noted, but to a lesser extent, within the ganglia. Myenteric ganglionitis was associated with degeneration and neuronal loss. Our results represent the first histopathological evidence supporting the hypothesis that H. pylori-induced gastric inflammation may induce morphological changes in myenteric gastric ganglia. These findings could help gain understanding of some still unclear aspects of pathogenesis of H. pylori infection, with the possibility of having broader implications for gastric cancer progression.


Assuntos
Carcinoma/patologia , Gânglios/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Plexo Mientérico/citologia , Neurônios/citologia , Neoplasias Gástricas/patologia , Idoso , Apoptose , Linfócitos B/citologia , Complexo CD3/metabolismo , Carcinoma/microbiologia , Estudos de Coortes , Eosinófilos/citologia , Feminino , Gânglios/citologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Humanos , Imuno-Histoquímica , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Plexo Mientérico/microbiologia , Plexo Mientérico/patologia , Neurônios/patologia , Estudos Retrospectivos , Neoplasias Gástricas/microbiologia , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Behav Brain Res ; 360: 341-353, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528940

RESUMO

Although it is well documented that exposure to aversive stimuli induces modulation of neural circuits and subsequent behavioral changes, the means by which an aversive stimulus concomitantly alters behaviors of different natures (e.g., defensive and appetitive) remains unclear. Here, we addressed this issue by using the learning-induced concurrent modulation of defensive and appetitive behaviors that occurs when the mollusk Aplysia is exposed to aversive stimuli. In Aplysia, aversive stimuli concomitantly enhance withdrawal reflexes (i.e., sensitization) and suppress feeding. Sensitization and feeding suppression, which are expressed in the short term and long term, depending on the training protocol, are accompanied by increased excitability of the tail sensory neurons (TSNs) controlling the withdrawal reflexes, and by decreased excitability of feeding decision-making neuron B51, respectively. Serotonin (5-HT) has been shown to mediate sensitization, but not feeding suppression. In this study, we examined which other neurotransmitter might be responsible for feeding suppression and its underlying cellular changes. Our results indicate that nitric oxide (NO) contributes to both short-term and long-term feeding suppression, as well as to the underlying decreased B51 excitability. NO was also necessary for the induction of long-term sensitization and for the expression of short-term increased TSN excitability in vitro, revealing a previously undocumented interaction between 5-HT and NO signaling cascades in sensitization. Overall, these results revealed a scenario in which multiple modulators contribute to the widespread changes induced by sensitizing stimuli in Aplysia.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Aplysia , Aprendizagem da Esquiva/efeitos dos fármacos , Estimulação Elétrica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Gânglios/citologia , Gânglios/efeitos dos fármacos , Gânglios/fisiologia , Técnicas In Vitro , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Técnicas de Patch-Clamp , S-Nitroso-N-Acetilpenicilamina/farmacologia , Serotonina/farmacologia , Estatísticas não Paramétricas
17.
J Comp Neurol ; 527(8): 1348-1361, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458068

RESUMO

Jumping spiders have four pairs of eyes (ocelli) of which only the principal eyes (PEs) are used to detect features of objects. Photoreceptors in the retina of the PEs form four layers (PL1-4) and terminate in the first optic ganglion (FOG). Here, we focus on Hasarius adansoni because it has unique depth vision besides color vision and its FOG appears to contribute to the initial processing of these visual modalities. We first investigated the neuroanatomical organization of the FOG. The three-dimensional structure of the FOG revealed by synapsin immunostaining is horseshoe-shaped and consists of four terminal zones (TZ1-4). Then, we traced single photoreceptors through serial sections and found that green-sensitive receptors of PL1 and 2 terminate in TZ1 and 2, respectively, by keeping retinotopic organization. In contrast to TZ1 and 2, TZ3 receives terminals of ultraviolet-sensitive receptors from lateral regions of both PL3 and 4, while photoreceptors of the medial region of PL3 and 4 terminate in TZ4. We further studied details of photoreceptor terminals and the branching pattern of interneurons in the FOG in Golgi stained preparations. Photoreceptors have long lateral processes in each terminal zone. Some photoreceptors terminating in TZ3 have branches innervating TZ1, indicating that TZ1 receives different spectral information. A type of interneuron connects TZ1 and 2, while others have branches within a single terminal zone or in the entire FOG. These results suggest that TZ1 and 2 contribute to color, shape, and depth vision, while TZ3 and 4 have specific roles for UV vision.


Assuntos
Células Fotorreceptoras/citologia , Retina/citologia , Aranhas/citologia , Vias Visuais/citologia , Animais , Gânglios/citologia
18.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404798

RESUMO

Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Depleção Linfocítica , Pele/imunologia , Varicellovirus/isolamento & purificação , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Feminino , Gânglios/citologia , Gânglios/imunologia , Gânglios/virologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta , Masculino , Pele/citologia , Pele/virologia
19.
J Comp Neurol ; 527(6): 1027-1038, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30444529

RESUMO

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Assuntos
Encéfalo/citologia , Gafanhotos/anatomia & histologia , Neurônios Eferentes/citologia , Octopamina , Tiramina , Animais , Encéfalo/fisiologia , Gânglios/citologia , Gânglios/fisiologia , Gafanhotos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Eferentes/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia
20.
Antioxid Redox Signal ; 30(11): 1389-1410, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29587485

RESUMO

AIMS: Cisplatin can damage spiral ganglion neurons (SGNs) and cause sensorineural hearing loss. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea, but the role of Wnt signaling in protecting SGNs from cisplatin treatment has not yet been elucidated. This study was designed to investigate the neuroprotective effects of Wnt signaling against cisplatin-induced SGN damage. RESULTS: First, we found that Wnt signaling was activated in SGNs after cisplatin treatment. Next, we discovered that overexpression (OE) of Wnt signaling in SGNs reduced cisplatin-induced SGN loss by inhibiting caspase-associated apoptosis, thus preventing the loss of SGN function after cisplatin treatment. In contrast, inhibition of Wnt signaling increased apoptosis, made SGNs more vulnerable to cisplatin treatment, and exacerbated hearing loss. TP53-induced glycolysis and apoptosis regulator (TIGAR), which scavenges intracellular reactive oxygen species (ROS), was upregulated in SGNs in response to cisplatin administration. Wnt/ß-catenin activation increased TIGAR expression and reduced ROS level, while inhibition of Wnt/ß-catenin in SGNs reduced TIGAR expression and increased the ROS level. Moreover, OE of TIGAR reduced ROS and decreased caspase 3 expression, as well as increased the survival of SGNs in Wnt-inhibited SGNs. Finally, antioxidant treatment rescued the more severe SGN loss induced by ß-catenin deficiency after cisplatin treatment. Innovation and Conclusion: This study is the first to indicate that Wnt signaling activates TIGAR and protects SGNs against cisplatin-induced damage through the inhibition of oxidative stress and apoptosis in SGNs, and this might offer novel therapeutic targets for the prevention of SGN injury. Antioxid. Redox Signal. 00, 000-000.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cisplatino/efeitos adversos , Cóclea/citologia , Cóclea/metabolismo , Necrose/induzido quimicamente , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Cóclea/efeitos dos fármacos , Gânglios/citologia , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Glicólise/fisiologia , Perda Auditiva/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Gânglio Espiral da Cóclea/citologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...